High Density Crowd Behaviors Recognition Based on Micro- behavioral and Sparse Representation
نویسندگان
چکیده
This paper presents a novel method to recognize high density crowd behaviors using micro-behaviors combining with Sparse Representation based on Locally Linear Embedding (named LLE-based Sparse Representation or LLE-SR). We extract micro-behaviors from each frame, respectively named Fountainhead, Bottleneck, Blocking, Lane and Ring/Arch, and construct micro-behaviors histograms to better describe complex high density crowd scenes. As the mid-lever semantic, micro-behaviors solve the gap between the high-level semantics and low-level semantic, and the creation of them does not need any information of target track. LLE-SR method fully considers the behavior of local manifold structure of samples. Through adding LLE regularization term in sparse classification model, the unstable property of the manifold structure can be solved, and then recognition rate is improved. Numerous experiments have been conducted in real scenes, the results of which demonstrate the effectiveness and robustness of the proposed method for high density crowd behavior recognition.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کامل